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� New thermal model for EDLCs was
rigorously derived from first
principles.

� Irreversible and reversible contribu-
tions to heat generation were
accounted for and physically
interpreted.

� Spatiotemporal variations of heat
generation rates and temperature
were investigated.

� Simulations qualitatively reproduced
experimental temperature measure-
ments under various conditions.
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a b s t r a c t

This study aims to develop physical modeling and understanding of the coupled electrodiffusion, heat
generation, and thermal transport occurring in electric double layer capacitors (EDLCs) during constant-
current cycling. To do so, the governing energy equation was derived from first principles and coupled
with the modified PoissoneNernstePlanck model for transient electrodiffusion in a binary and sym-
metric electrolyte. In particular, irreversible Joule heating and reversible heat generation rates due to ion
diffusion, steric effects, and changes in entropy of mixing in EDLCs were rigorously formulated. Detailed
numerical simulations of the temperature rise in the electrolyte were performed for planar electrodes.
The results qualitatively reproduced experimental data reported in the literature under various charging/
discharging conditions.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

Electric double layer capacitors (EDLCs) are promising electrical
energy storage devices. They store electric charge physically within
the electric double layer forming at the mesoporous electrode/elec-
trolyte interface. They fill the gap between batteries featuring high

energy densities but low power densities and conventional dielectric
capacitors offering high power densities but low energy densities
[1,2]. EDLCs offer significantly larger powerdensities, longer cycle life,
and higher cycle efficiencies than batteries, while still offering higher
energy densities than conventional capacitors [1e5]. Their high po-
wer capability, rapid cycling, and long cycle lifemake them attractive
for applications such as load leveling, regenerative braking, and dy-
namic stabilization of the utility grid [1e5]. Recovering energy from
intermittent environmental sources of thermal, mechanical, and
photon energy is also a potential application for EDLCs [1].
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During EDLC charging and discharging, a portion of the elec-
trical energy is lost as heat. The heat generation rate depends on the
cell design, its materials, and its operating conditions [3]. Elevated
temperatures result in (i) accelerated aging of EDLCs [2e7], (ii)
increased self-discharge rates [2,4e6], (iii) increased cell pressure,
and possibly (iv) electrolyte evaporation [6]. As EDLCs age, their
resistance increases and their capacitance decreases in, which in
turn leads to higher cell temperature and voltage [7]. In addition,
temperature differences between series-connected EDLCs can
cause voltage imbalances and destructive overvoltage of individual
cells [2,3]. To avoid these harmful effects, temperature changes in
EDLCs should be mitigated. To do so, thermal modeling can be used
(i) to predict operating temperatures and develop thermal man-
agement strategies for existing EDLC designs and (ii) to predict the
thermal behavior of novel EDLC designs.

This study aims to develop physical modeling and understand-
ing of the coupled electrodiffusion, heat generation, and thermal
transport occurring in electric double layer capacitors during
operation. To do so, governing equations were derived and detailed
numerical simulations of planar electrodes were developed and
qualitatively compared with experimental data reported in the
literature. In particular, irreversible and reversible heat generation
rates and temperature rise in EDLCs were investigated for the
practical case of constant-current cycling.

2. Background

2.1. Structure of the electric double layer

Fig. 1 illustrates the electric double layer (EDL) forming near a
planar electrode. The Stern model [8,9] proposes that the EDL
within the electrolyte consists of the Stern and diffuse layers. The
Stern layer is defined as the compact layer near the electrode sur-
face with no free charge [8,9]. By contrast, ions in the diffuse layer
are mobile under the coupled influences of electrostatic forces and
diffusion [8,9]. The overall thickness of the EDL varies with po-
tential and concentration [8,9].

2.2. Models for time-dependent ion transport

The PoissoneNernstePlanck (PNP) model describes time-
dependent electrodiffusion in the diffuse layer. The Poisson equa-
tion governs the local electric potential j, while the NernstePlanck

equations describe the ion transport. The NernstePlanck equations
are based on the dilute solution theory and treat ions as non-
interacting point charges. Thus, there is no upper limit to the ion
concentrations at the electrode surface [10]. This reduces the val-
idity of the PNP model to dilute electrolytes subjected to low sur-
face potentials. In fact, the PNP model predicts surface ion
concentrations larger than the theoretical maximum concentration
cmax for surface potentials only a few times larger than the thermal
voltage jT ¼ RuT/zF [10]. Here, Ru is the universal gas constant, T is
the absolute temperature, F is the Faraday constant, and z is the ion
valency. Assuming simple cubic packing, cmax can be expressed as
cmax ¼ 1/NAa

3 where a is the effective ion diameter and NA is the
Avogadro constant [10].

Recently, Kilic et al. [10]derived amodifiedPoisson-Nernst-Planck
(MPNP) model accounting for the finite ion size and valid for large
electrolyte concentrations and surface potentials. The model was
derived for binary and symmetric electrolytes with constant
permittivity. This MPNPmodel will be used in the present study.

2.3. Experimentally-observed thermal behavior of EDLCs

Experimental studies have shown that constant-current cycling
of EDLCs under current � Is resulted in an overall rise in tempera-
ture from cycle to cycle with superimposed temperature oscilla-
tions at the cycle frequency [3e6,11e13]. The overall temperature
rise corresponded to irreversible heating andwas proportional to I2s
[4]. The temperature oscillations were attributed to reversible
heating which was exothermic during charging, endothermic dur-
ing discharging, and proportional to Is [4,11,12]. Finally, the ampli-
tude of the temperature oscillations at the EDLC outer surface
increased with increasing potential window and with decreasing
current [4].

2.4. Thermal modeling of EDLCs

Existing thermal models of EDLCs predicted the EDLC tempera-
ture as a function of space and/or time. They solved the heat diffusion
equation within the cell [2,5,13] or employed the thermal circuit
analogy [2,6]. The irreversible heat generation rate was either
imposed as an input parameter [2,5,11] or predicted as Joule heating
using the imposed current and the experimentally-measured resis-
tance of the device [4,6,7]. It was also assumed to be uniform
throughout the entire device [5,6,11,13] or to have different values in
the current collectors, electrodes, and separator [2].

Mostmodels predicted the overall temperature rise, but failed to
account for the reversible heat generation and to predict the tem-
perature oscillations [2,5,6,11]. To the best of our knowledge, the
only existing model of EDLC reversible heating was developed by
Schiffer et al. [4]. The authors considered that the entropy of the
ions (i) decreased during charging as ions formed the EDL and (ii)
increased during discharging as they returned to their uniform
concentration [4]. These processes were respectively exothermic
and endothermic to satisfy the second law of thermodynamics [4].
The entropy change DS of the ions due to EDL formation in a binary
electrolyte with identical ion size was estimated as [4]

DS ¼ 2kBln
VS

V0

� �N

: (1)

Here, kB is the Boltzmann constant, Nz Cijs/e is the number of ions
in each EDL for monovalent electrolyte, e is the elementary charge,
and js is the cell voltage. The ions were assumed to occupy the total
electrolyte volume V0 in the discharged state and the Stern layer
volume VS in the charged state. The differential capacitance Ci was
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Fig. 1. Illustration of electric double layer structure near a planar electrode.
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such that Cidjs/dt ¼ Is [4]. The reversible heat generation rate _Q rev;S
(in W) was then predicted as [4]

_Q rev;S ¼ �T
dS
dt

¼ �2T
kB
e
ln
�
VS

V0

�
Ci
djs

dt
¼ �2

TkB
e

ln
�
VS

V0

�
IsðtÞ

(2)

where T is the average cell temperature and S is the entropy of the
EDLC system. This expression indicates that _Q rev;S is proportional to
the current, as observed experimentally [12]. However, the deri-
vation assumed that the EDL consisted of a monolayer of ions and
that the capacitance was independent of cell voltage. Actual EDLCs
are known to violate these assumptions [8,9]. In addition, Equation
(2) predicts the overall reversible heat generation rate for the entire
device and ignores its spatial variation. It was also difficult to
validate experimentally due to large uncertainties in evaluating VS

and V0 for porous electrodes. Instead, Schiffer et al. [4] fitted the
value of ln(VS/V0) using the measured temperature oscillation
amplitude and compared it with an estimate based on the device
geometry. Equation (2) was later used in two semi-empirical
thermal models [7,13]. Gualous et al. [13] found good agreement
between their temperature predictions and experimental mea-
surements. However, the details of how they implemented _Q rev;S
and evaluated VS and V0 remain unclear.

Existing thermal models of EDLCs predicted total irreversible
and reversible heat generation rates for entire devices. They
assumed uniform heat generation and relied on experimentally-
measured device properties including electrical resistance. They
did not account for the detailed physical phenomena in EDLCs such
as electric double layer formation and ion transport. Unfortunately,
these models can neither predict the thermal performance of novel
and untested EDLC designs, nor predict how different device de-
signs and materials would affect the heat generation and
temperature.

The present study develops a spatiotemporal physical model
accounting for coupled ion transport, heat generation, and thermal
transport during operation of a planar EDLC. The heat generation
rates within the electrolyte were derived from first principles. This
model was used to understand the physical phenomena governing
the local thermal behavior of EDLCs and to address several funda-
mental questions, namely (i) what physical processes account for
the experimentally-observed temperature oscillations? (ii) Does
the heat generation rate vary significantly with space and/or time?
(iii) Are the assumptions used by current thermal models
appropriate?

3. Analysis

3.1. Schematic and assumptions

Fig. 2 schematically shows a one-dimensional cell of thickness
2L consisting of two planar electrodes separated by liquid electro-
lyte. The electrode located at x ¼ 0 will be denoted by electrode A
and the electrode at x ¼ 2L by electrode B. The electrolyte consists
of three regions: a Stern layer adjacent to each electrode and one
diffuse layer. The EDLC is charged and discharged under current
density js(t) imposed at electrode A.

To make the problem mathematically tractable, the following
assumptions were made: (1) chemical reactions and ion insertion
into the electrode were absent. (2) The electrolyte was binary and
symmetric, i.e., it consisted of two ion species with identical
valency z, diffusion coefficient D, and effective diameter a. (3)
Dissociation of the electrolyte was complete. (4) Bulk movement of
the electrolyte, i.e., advection, was negligible. (5) All electrolyte

properties were constant and independent of temperature, with
the sole exception of the concentration-dependent electrical con-
ductivity of the electrolyte. (6) The simulated EDLC was thermally
insulated, and (7) the Stern layer thickness H was assumed to be
equal to half of the effective ion diameter, i.e., H ¼ a/2.

Assumptions (1)e(3) are realistic for typical EDLC devices using,
for example, aqueous KOH or TEABF4 in acetonitrile as electrolyte
[4,14]. Bazant et al. [15] suggested that the assumption of sym-
metric ion size is reasonable for solvated ions since smaller bare
ions tend to be more solvated than larger ions. Assumption (4) is
satisfied if the electrolyte is confined in a porous separator inhib-
iting bulk fluid motion [2,5,16]. Assumptions (5) and (6) are
appropriate first order approximations for relatively small tem-
perature variations. However, the effects of temperature on the
electrolyte properties and ion transport are expected to become
significant for large temperature rises. These assumptions will be
relaxed in future studies.

3.2. Poisson equation

3.2.1. Formulation
The equation governing the electric potential j(r,t) at location r

and time t is the Poisson equation expressed as [10,17,18]

V$ðε0εrVjÞ ¼
8<
:

0 in the Stern layers

�F
Pn
i¼1

zici in the diffuse layer (3)

where ci(r,t) and zi respectively denote the concentration and
valency of species i and n is the number of ion species present. For
binary and symmetric electrolytes, n ¼ 2 and z1 ¼ �z2. Here, ε0 and
εr are the vacuum permittivity and the relative permittivity of the
electrolyte, respectively. The Faraday constant is denoted by F. The
Stern layers contain no free charges and the electric potential
profile is linear.

3.2.2. Boundary and initial conditions
The one-dimensional Poisson Equation (3) in Cartesian co-

ordinates governing j(x,t) is a second-order partial differential
equation (PDE) in space. It is solved within both the Stern and the
diffuse layers. Two boundary conditions are required for each re-
gion. Here, the initial potential was assumed to be uniform and
equal to zero, i.e.,

j x;0ð Þ ¼ 0 V for 0 � x � 2L: (4)

The current density at the surface of electrode A at x ¼ 0 was
imposed as a square wave of period tc alternating between js

Fig. 2. Illustration of simulated 1D cell.
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and �js. The imposed current corresponds to an electronic current
in the external circuit which induces an ion flux within the elec-
trolyte. The boundary condition at the surface of electrode A cor-
responds to charge conservation across the electrode/electrolyte
interface so that the displacement current jdisp matches the
imposed electronic current js, i.e.,

jdisp ¼ �ε0εr
v2j

vtvx
0; tð Þ ¼

(
js for nc � 1ð Þtc � t < nc � 1=2ð Þtc
�js for nc � 1=2ð Þtc � t < nctc

(5)

where js is the magnitude of the imposed current density and nc is
the cycle number nc ¼ 1,2,.. In addition, the electric potential and
electric displacement were continuous across the Stern/diffuse
layer interface located at x ¼ H so that [17e19],

j
�
H�; t

�
¼ j

�
Hþ; t

�
and ε0εr

vj

vx

�
H�; t

�
¼ ε0εr

vj

vx

�
Hþ; t

�
:

(6)

Similarly, the electric potential and electric displacement were
continuous across the second Stern/diffuse layer interface located
at x ¼ 2L � H, i.e., [17e19],

j
�
2L� H�; t

�
¼ j

�
2L� Hþ; t

�
and

ε0εr
vj

vx

�
2L� H�; t

�
¼ ε0εr

vj

vx

�
2L� Hþ; t

�
:

(7)

Furthermore, the electrical ground was defined at the surface of
electrode B, located at x ¼ 2L, i.e.,

jð2L; tÞ ¼ 0V : (8)

The choice of reference potential is arbitrary and affects neither ion
transport nor heat transfer.

3.3. Mass conservation equation

3.3.1. Formulation
In the diffuse layer, the concentrations c1(r,t) and c2(r,t) satisfy

the mass conservation equation given by [10]

vci
vt

¼ �V$Ni for i ¼ 1;2;.;n (9)

where Ni(r,t) is the local flux of species i. For a binary (n ¼ 2) and
symmetric electrolyte, the ion flux Ni(r,t) is expressed as [10]

Niðr; tÞ ¼ �
�
DVci þ

ziFD
RuT

ciVjþ Da3NAci
1� a3NAðc1 þ c2Þ

Vðc1 þ c2Þ
�
(10)

whereD is the ion diffusion coefficient in the electrolyte and a is the
effective ion diameter. Here, Ru is the universal gas constant
Ru ¼ 8.314 J mol�1 K�1 and NA is the Avogadro constant
NA ¼ 6.022 � 1023 molecules mol�1. The first and second terms on
the right-hand side of Equation (10) represent the ion fluxes due to
diffusion and migration in an electric field, respectively [20]. The
third term accounts for steric effects caused by finite ion size [10]. In
particular, it ensures that the total ion concentration c1 þ c2 cannot
exceed the theoretical maximum concentration cmax ¼ 1/NAa

3

corresponding to ion close packing. The electric potential and ion
transport governed by Equations (3), (9) and (10) are coupled to the
thermal behavior through the local temperature T in Equation (10)
and through the temperature dependence of the diffusion coeffi-
cient D and relative permittivity εr.

3.3.2. Boundary and initial conditions
The one-dimensional mass conservation Equation (9) in Carte-

sian coordinates is a first order PDE in terms of time and second
order in space. It is solved within the diffuse layer only. It requires
one initial condition and two boundary conditions for the con-
centration ci(x,t) of each ion species. Both species of the binary and
symmetric electrolyte were assumed to start at the same uniform
bulk concentration cN such that

c1ðx;0Þ ¼ c2ðx;0Þ ¼ cN for 0 � x � 2L: (11)

As previously mentioned, ion insertion into the electrode was
ignored, so the ion flux at the Stern/diffuse layer interface located at
x ¼ H vanished, i.e.,

N1 H; tð Þ ¼ N2 H; tð Þ ¼ 0 mol m�2s�1: (12)

Similarly, the ion flux vanished at the second Stern/diffuse layer
interface located at x ¼ 2L � H, i.e.,

N1 2L� H; tð Þ ¼ N2 2L� H; tð Þ ¼ 0 mol m�2s�1: (13)

3.4. Energy conservation equation

3.4.1. Formulation
Applying energy conservation principles to a fixed control

volume of electrolyte in the absence of bulk motion and
chemical reactions yields the following energy conservation
equation [21]

v

vt
ðruÞ ¼ �V$q00 (14)

where r(r,t) is the electrolyte density, u(r,t) is the specific internal
energy of the electrolyte, and q

00
(r,t) is the local energy flux at

location r and time t. For a multicomponent system with concen-
tration gradients, the energy flux q

00
includes contributions from

Fourier heat conduction, interdiffusion of species, and the Dufour
effect [20,21]. The Dufour or diffusion thermo-effect refers to an
energy flux driven by a gradient of electrochemical potential or
pressure [22]. It is the reverse of the Soret effect or thermal diffu-
sion [22]. The contribution from the Dufour effect is usually
negligible [20e22] and will not be included here. Thus, the energy
flux can be expressed as [20,21]

q00 ¼ �kVT þ
Xn
i¼0

HiNi: (15)

where k is the electrolyte thermal conductivity, Hi is the partial
molar enthalpy of species i (in J mol�1), n is the number of ion
species, and subscript i ¼ 0 refers to the solvent. Substituting
Equation (15) into Equation (14) and using the mass conservation
Equation (9) yields

v

vt
ðruÞ ¼ V$ðkVTÞ þ

Xn
i¼0

Hi
vci
vt

�
Xn
i¼0

Ni$VHi: (16)

The first, second, and third terms on the right-hand side of Equation
(16) represent the net increase of energy within the control volume
due to (i) heat conduction, (ii) accumulation of ions and/or solvent
molecules, and (iii) flow of ions and/or solvent to regions with
lower Hi, respectively.

The energy balance given by Equation (16) can be transformed
into a thermal energy balance in terms of local temperature T(r,t).
First, the change in ru can be expressed in terms of the enthalpy per
unit volume, defined by rh, as

A. d’Entremont, L. Pilon / Journal of Power Sources 246 (2014) 887e898890
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v

vt
ðruÞ ¼ v

vt
ðrhÞ � vp

vt
(17)

where h(r,t) and p(r,t) are respectively the specific enthalpy of the
electrolyte in J kg�1 and the pressure in Pa at location r and time t.
The term v(rh)/vt can be expanded further. The exact differential of
the enthalpy per unit volume, defined as rh, of an n-component
mixture can be expressed as [23]

dðrhÞ ¼ rcpdT þ
�
1þ

�
vlnr
vlnT

�
p;ci

�
dpþ

Xn
i¼0

Hidci (18)

where cp is the specific heat of the electrolyte in J kg�1 K�1. Typi-
cally (vln r/vln T)p,ci � 1 for liquids and solids [23]. Then, combining
Equations (17) and (18) yields

v

vt
ðruÞ ¼ rcp

vT
vt

þ
Xn
i¼0

Hi
vci
vt

: (19)

The first and second terms on the right-hand side of Equation (19)
represent the time rates of change of the thermal energy and of the
electrochemical potential energy, respectively. Combining Equation
(19) with Equation (16) yields the energy conservation equation for
the electrolyte

rcp
vT
vt

¼ V$ kVTð Þ þ _q: (20)

This expression corresponds to the heat diffusion equation [24]
where the heat generation rate _q is expressed as

_q ¼ �
Xn
i¼0

Ni$VHi: (21)

3.4.2. Heat generation rate
The partial molar enthalpy Hi of species i can be expressed as a

function of the electrochemical potential ~mi and the partial molar
enthalpy Si ¼ �vmi=vT according to [23]

Hi ¼ ~mi þ TSi: (22)

The electrochemical potential ~mi ¼ ziFjþ mi of species i accounts
for the electrical potential energy ziFj of charged species as well as
for the chemical potential mi ¼ m0i Tð Þ þ RuTln aið Þ [20,23]. Here,
m0i ðTÞ is the chemical potential of species i at a standard state and is
a function of T only, while ai is the local thermodynamic activity of
species i [20,23]. Thus, the gradient VHi can be written as

VHi ¼ ziFVjþ Vmi þ V
�
TSi
�
: (23)

Finally, substituting Equation (23) and the expressions for the
chemical potential mi and the partial molar entropy Si into Equation
(21), the heat generation rate _q can be written as

_q ¼ _qE þ _qS ¼ �Vj$

 Xn
i¼1

ziFNi

!
þ
Xn
i¼0

Ni$RuV
�
T2vln ai

vT

�
:

(24)

The first term _qE on the right-hand side of Equation (24) represents
the thermal energy released as ions decreased their electrical po-
tential energy. Summation is carried out over the n charged ion
species i, with z0 ¼ 0 for the neutral solvent. The second term _qS is
the net contribution to the heat generation rate due to the gradients
of chemical potential, partial molar entropy, and temperature. Heat
is released as ions and/or solvent molecules decrease their entropy,
as suggested by Schiffer et al. [4].

Electrical Heating. The term _qE can alternatively be written as
_qE ¼ j$E where E ¼ �Vj is the electric field vector and the ionic
current density vector j is defined as [20]

jðr; tÞ ¼
Xn
i¼1

ziFNiðr; tÞ: (25)

This term corresponds to conversion of electrical energy into
thermal energy [25]. For conductors obeying Ohm’s law, the current
density j is directly proportional to the electric field, i.e., j ¼ sE,
where s is the electrical conductivity of the conductor [26]. In that
case, the electrical heat generation rate can be expressed as
_qE ¼ j$E ¼

���jj2=s. This heat generation rate is irreversible and
known as Joule heating [20,27,28]. However, in electrolyte with
non-uniform ion concentrations, the current density depends not
only on the electric field but also on diffusion and steric effects. For
a binary and symmetric electrolyte with cations referred to by i ¼ 1
and anions by i ¼ 2, the local ionic current density j can be
expressed, by combining Equations (10) and (25), as

j ¼ sE� DzFV c1 � c2ð Þ � DzFa3NA c1 � c2ð Þ
1� a3NA c1 þ c2ð ÞV c1 þ c2ð Þ: (26)

In other words, electrolytes obey Ohm’s law only in the absence of
ion concentration gradients. The electrolyte electrical conductivity
s depends on the local ion concentrations and can be expressed as
[20,29]

sðr; tÞ ¼ D
RuT

Xn
i¼1

z2i F
2ciðr; tÞ: (27)

After somemanipulations, Equation (26) can be used to express the
electric field vector E and substitute it in the expression of the
electrical heat generation rate _qE . Then, for an electrolyte, _qE can be
written as the sum of three contributions
_qEðr; tÞ ¼ _qE;jðr; tÞ þ _qE;dðr; tÞ þ _qE;sðr; tÞ. The heat generation rates
_qE;j, _qE;d, and _qE;s correspond to the contributions of Joule heating,
ion diffusion, and steric effects, respectively. These three contri-
butions are expressed as

_qE;jðr; tÞ ¼ jjj2
s
; _qE;dðr; tÞ ¼ DzF

s
j$Vðc1 � c2Þ; and

_qE;sðr; tÞ ¼ DzFa3NAðc1 � c2Þ
s
	
1� a3NAðc1 þ c2Þ


 j$Vðc1 þ c2Þ: (28)

If the ion concentrations ci(r,t) are uniform or if the concentration
gradients are perpendicular to the current density j, then _qE;d and
_qE;s vanish and the electric heat generation reduces to Joule heating
_qE;j ¼ jjj2=s. The latter condition occurs for example in electroos-
mosis where the electric current is parallel to the electric double
layer [21,29]. It is also interesting to note that the Joule heating term
_qE;j is always positive whereas _qE;d and _qE;s can be either positive or
negative. In other words, Joule heating is irreversible while _qE;d and
_qE;s contribute to the reversible heat generation rate. During the
charging step, the ions migrated in the direction of decreasing
electric potential energy to form the EDLs, releasing thermal energy
in the process. During discharging, the ion motion was driven by
diffusion and steric effects as the EDLs relaxed. The ion fluxes were
then in the direction of increasing electric potential energy and
thermal energy was absorbed. To the best of our knowledge, the
diffusion and steric contributions _qE;d and _qE;s have not been
formulated or accounted for in the literature.

Heat of mixing. The heat of mixing term _qS is a function of the
activity gradients and of the temperature gradient. The activity can

A. d’Entremont, L. Pilon / Journal of Power Sources 246 (2014) 887e898 891
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be expressed in terms of the activity coefficient gi defined as
ai ¼ gici/cref where cref is a reference concentration [23]. Then, the
heat generation rate _qS is given by

_qSðr; tÞ ¼
Xn
i¼0

Ni$V

�
T2Ru

vlngi
vT

�
: (29)

Evaluating _qS requires an expression for gi in terms of the tem-
perature and ion concentrations. For dilute solutions of binary and
symmetric electrolytes, the activity coefficient gi of ion species i can
be expressed, according to the DebyeeHückel limiting law, as
[20,23]

lngi ¼ �z3eF2ðc1 þ c2Þ1=2
8pðε0εrRuTÞ3=2

: (30)

Combining Equations (29) and (30) and assuming that the contri-
bution from the solvent is negligible compared with that of the ions
yields _qS ¼ _qS;c þ _qS;T where

_qS;cðr; tÞ ¼
3

32p
z3eF2

ðε0εrÞ3=2R1=2u T1=2ðc1þ c2Þ1=2
ðN1þN2Þ$Vðc1þ c2Þ

and _qS;Tðr; tÞ ¼ � 3
32p

z3eF2ðc1þ c2Þ1=2
ðε0εrÞ3=2R1=2u T3=2

ðN1þN2Þ$VT :

(31)

In the absence of concentration gradients, _qS;c vanishes, while _qS;T
vanishes if the temperature is uniform. Here also, _qS;c and _qS;T can
be either positive or negative and contribute to the reversible heat
generation rate. The heat of mixing was previously derived in the
form shown in Equation (24) in modeling of transport phenomena
in battery systems [25,30]. However, it was typically ignored in
solving the energy equation [25,31,32].

Overall, the energy equation can be written as

rcp
vT
vt

¼ V$

�
kVT

�
þ _qirr þ _qrev (32)

where _qirr and _qrev are the irreversible and reversible heat gener-
ation rates, respectively. They are defined as _qirr ¼ _qE;j and
_qrev ¼ _qE;d þ _qE;s þ _qS;c þ _qS;T . Note that there was no ion insertion
into the electrodes [Assumption (1)]. Therefore, the ion fluxes Ni

were equal to zero within the Stern layers. Consequently, the ionic
current density and the heat generation rates _qirrðr; tÞ and _qrevðr; tÞ
vanished within this compact layer.

3.4.3. Boundary and initial conditions
The one-dimensional transient energy conservation Equation

(20) in Cartesian coordinates is a first order PDE in time and second
order in space. It is solved in both the Stern and the diffuse layers. It
requires one initial condition and two boundary conditions for each
layer. The initial temperature was assumed to be uniform and
equal to

Tðx;0Þ ¼ T0 for 0 � x � 2L: (33)

The surface of electrode A located at x ¼ 0 was assumed to be
thermally insulated, i.e.,

�k
vT
vx

ð0; tÞ ¼ 0 Wm�2: (34)

The temperature and heat flux were continuous across the Stern/
diffuse layer interface located at x ¼ H such that

T H�; tð Þ ¼ T Hþ; t
� �

and � k
vT
vx

H�; tð Þ ¼ �k
vT
vx

Hþ; t
� �

:

(35)

Similarly, the temperature and heat flux were continuous across
the second Stern/diffuse layer interface located at x ¼ 2L � H, i.e.,

T
�
2L� H�; t

�
¼ T

�
2L� Hþ; t

�
and

� k
vT
vx

�
2L� H�; t

�
¼ �k

vT
vx

�
2L� Hþ; t

�
; ð36Þ

The surface of electrode B located at x ¼ 2L was thermally
insulated, i.e.,

�k
vT
vx

ð2L; tÞ ¼ 0 W m�2: (37)

3.5. Constitutive relationships

The current study focuses on the organic electrolyte consisting of
tetraethylammonium tetrafluoroborate (TEABF4) salt in propylene
carbonate (PC) solvent. The ions TEAþ (i ¼ 1) and BF�4 (i ¼ 2) have
valency z1 ¼ �z2 ¼ 1 [33e35]. Their effective diameter was taken as
a ¼ 0.68 nm [33,34]. The dielectric constant, thermal conductivity,
density, and specific heat of the electrolytewere taken as those of the
PC solvent and equal to εr ¼ 66.1, k ¼ 0.164 W m�1 K�1,
r ¼ 1205 kg m�3, and cp ¼ 2141 J kg�1 K�1, respectively [36]. All
propertieswere evaluated at approximately T0¼ 298 K. The diffusion
coefficient was estimated to be D ¼ 1.7 � 10�10 m2 s�1 using Equa-
tion (27) from electrical conductivity data for a concentration of
c1 ¼ c2 ¼ cN ¼ 1mol L�1 [35]. As mentioned previously [Assumption
(5)], the present study assumed that the electrolyte properties were
independent of temperature T. In keeping with this assumption, the
local temperature T in Equations (10), (27) and (31) was evaluated as
the initial temperature T0.

3.6. Method of solution

The one-dimensional governing Equations (3), (9) and (20) and
the associated initial and boundary conditions were solved using
finite element methods. Numerical convergence was assessed
based on the computed local electric potential j(x,t), ion concen-
trations c1(x,t) and c2(x,t), and temperature T(x,t). Of these quanti-
ties, the temperature was the most sensitive to mesh refinement.
The mesh size was the smallest at the Stern/diffuse layer interfaces
due to the large potential and concentration gradients and then
gradually increased away from these boundaries. The mesh was
refined by reducing the element size at the Stern/diffuse layer
interface and the maximum element growth rate. The time step
was refined by decreasing the relative and absolute tolerances [37].
During each time step, these tolerances were compared with the
estimated local error between solutions at the previous and current
time steps for each degree of freedom in the model [37]. The time
step was then adjusted until the convergence criterion was satis-
fied, as described in Ref. [37]. This enabled the use of very small
time steps during phases with rapid changes, such as the transi-
tions between charging and discharging, while using a larger time
step for the rest of the computation. The convergence criteria for
the mesh and time step were defined so that the maximum relative
difference in the local temperature rise (T � T0) was less than 0.5%
when dividing by two (i) the element size at the Stern/diffuse layer
interface, (ii) the maximum element growth rate, and (iii) both the
relative and absolute tolerances.
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4. Results and discussion

The simulations were performed for cN¼ 1mol L�1 of TEABF4 in
PC with a domain size of L ¼ 50 mm and an initial temperature of
T0 ¼ 298 K. The EDLC was cycled at a constant current of
js ¼ 14 mA cm�2 with a cycle period tc ¼ 0.01 s. This value of js was
within the range of current densities per unit separator area re-
ported by experimental studies [4,12]. The combination of js and tc
was chosen to yield a realistic maximum potential of 2.5 V chosen
by analogy with the operating voltage of many commercial EDLCs
using organic electrolytes [27,38].

4.1. Electric potential

Fig. 3(a) shows the electric potential j(0,t) at the surface of elec-
trode A as a function of time t corresponding to the total voltage be-
tween the electrodes, since electrode B was electrically grounded.
Fig. 3(a) shows that the surface potential varied nearly linearly be-
tween the minimum potential of 0 V and the maximum potential of
2.5 V. The potential window was determined by the combination of
the imposed current density js and the cycle period tc. Note that the
planar EDLC simulated charged very rapidly compared to a realistic

porousEDLC, so the cycle period tc corresponding to a realistic current
density js and realistic potential window of 0e2.5 V was very small.

4.2. Ion concentrations

Fig. 3(b) shows the anion concentration c2(a/2,t) at the Stern/
diffuse layer interface near electrode A as a function of time t. It
shows that the anion concentration at the Stern/diffuse layer
interface increased rapidly at the beginning of the charge step. It
then leveled off at the maximum concentration cmax ¼ 1/
NAa

3 ¼ 5.3 mol L�1 and remained at this value for most of the cycle.
It decreased back to the bulk concentration at the end of the
discharge step. The plateau of c2(a/2,t) corresponded to the surface
potential j(0,t) exceeding 0.75 V.

Fig. 4 shows the anion concentration c2(x,t) as a function of
location x for several times during a charging step near (a) electrode
A and (b) electrode B under constant current js ¼ 14 mA cm�2.
Fig. 4(a) indicates that the anion concentration near electrode A
increased from the initial concentration cN ¼ 1 mol L�1 to cmax as
the electric double layer formed. After the surface concentration
reached cmax, a close-packed layer with uniform concentration
c2¼ cmax formed next to the surface. Beyond the close-packed layer,
the concentration decreased to the bulk concentration cN over a
narrow region with large concentration gradients. This region will(a)

(b)

Fig. 3. (a) Electric potential j(0,t) at the surface of electrode A and (b) anion con-
centration c2(a/2,t) at the Stern/diffuse layer interface as functions of time during two
consecutive charging/discharging cycles of period tc ¼ 10 ms under constant current
js ¼ 14 mA cm�2.

(a)

(b)

Fig. 4. Predicted anion concentrations c2(x,t) (a) near electrode A and (b) near elec-
trode B as a function of x at various times during a charging step under constant
current js ¼ 14 mA cm�2.
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be referred to as the EDL region. As charging proceeded, the close-
packed layer became thicker and the EDL region propagated within
the electrolyte in the positive x-direction. By contrast, Fig. 4(b)
shows that the anion concentration near electrode B decreased
from the initial concentration cN to zero as the EDLC charged. It
transitioned from the bulk concentration to zero over a narrow EDL
region. As charging proceeded, the EDL region adjacent to electrode
B propagated within the electrolyte in the negative x-direction and
the region of anion depletion became wider. The cation concen-
tration c1(x,t) (not shown) was the mirror image of the anion
concentration c2(x,t) such that c1(x,t) ¼ c2(2L � x,t).

4.3. Current density

Fig. 5(a) shows the predicted current density j(L,t) at the
centerline between electrodes A and B as a function of time t. It
demonstrates that the current � js imposed at electrode A [Equa-
tion (5)] resulted in cycles of constant ionic current density of the
same magnitude, i.e., j(L,t) ¼ �14 mA cm�2. In addition, there was
no significant delay between the switching of the imposed current
density and the response of the current density j(L,t) at the

centerline. Fig. 5(b) shows the current density j(x,14 ms) as a
function of location x shortly before the end of the charging step.
The current density was uniform across the domain, except near
the electrodes where it sharply decreased to zero due to the
absence of ion insertion. The current density was symmetric about
the centerline such that j(x,t) ¼ j(2L � x,t). Similar results were
observed at all times.

4.4. Thermal behavior

4.4.1. Local heat generation rates
Fig. 6(a) shows thefive heat generation rates _qE;j, _qE;d, _qE;s, _qS;c, and

_qS;T as a function of location x at time t¼ 14ms shortly before the end
of a charging step. The main figure shows the heat generation rates
near electrodeAwhile the inset plots themover the entire electrolyte
domain.Note that all theheat generation rateswere symmetric about
the centerline. Fig. 6(a) indicates that _qE;d, _qE;s, and _qS;c featured large
peaks near the electrode surfaces. They were several orders of
magnitude larger than _qE;j within this narrow region but vanished in

(a)

(b)

Fig. 5. Predicted current density (a) j(L,t) at the centerline as a function of time t
during two consecutive charging/discharging cycles with period tc ¼ 10 ms under
constant current js ¼ 14 mA cm�2 and (b) j(x,14 ms) as a function of location x at 1 ms
before the start of the discharging step.

(a)

(b)

Fig. 6. Predicted heat generation rates _qE;jðx; tÞ, _qE;dðx; tÞ, _qE;sðx; tÞ, _qS;cðx; tÞ, and
_qS;T ðx; tÞ as a function of location x (a) at time t ¼ 14 ms shortly before the end of a
charging step and (b) at time t ¼ 16 ms shortly after the beginning of a discharging step
under constant current js ¼ 14 mA cm�2.
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the rest of the electrolyte domain. The locations of the peaks corre-
sponded to the regions of large concentration gradients shown in
Fig. 4. These three terms were positive during the charging step. The
inset of Fig. 6(a) shows that the Joule heating term _qE;j was uniform
throughout the electrolyte, equal to j2s =s ¼ 15:3 mW cm�3, and the
only significantheatgeneration ratebeyond theEDL. Indeed, the ionic
current density jwasuniformandequal to jsnearly everywhere in the
electrolyte [Fig. 5(b)].

Similarly, Fig. 6(b) shows the five heat generation rates _qE;j, _qE;d,
_qE;s, _qS;c, and _qS;T as a function of location x at time t¼ 16ms shortly
after the beginning of the discharging step. This time was chosen
because the concentration profiles were almost identical to those at
time t ¼ 14 ms. Fig. 6(b) indicates that _qE;d, _qE;s, and _qS;c featured
large negative peaks near the electrode surface with identical
location and magnitude but opposite sign to those shown in
Fig. 6(a). The inset of Fig. 6(b) establishes that _qE;j remained posi-
tive, uniform, and the only significant source of heat generation in
most of the electrolyte. Note that _qS;T was negligible compared to
the other heat generation rates over the entire domain and at all
times. Therefore, it will be ignored in the rest of this manuscript.

Overall, these results suggest that Joule heating _qE;j was always
positive and corresponded to irreversible heat generation within
the electrolyte. By contrast, _qE;d, _qE;s, and _qS;c could be positive or
negative, corresponding to reversible heat generation. However,
_qS;T was negligible compared with the other heat generation rates
for the conditions tested. Finally, the total heat generation rate
varied strongly with space and time and was not uniform. This is
contrary to what is frequently assumed in existing thermal models
[5,6,11,13].

4.4.2. Overall heat generation rates
The reversible heat generation rates _qE;d, _qE;s, and _qS;c locally

reached very large magnitudes. However, unlike _qE;j, they were
confined to very small regions near the electrode surfaces. To fully
assess their relative significance, one should consider their overall
contributions integrated over the entire electrolyte domain. The
overall heat generation rate per unit separator area (in W m�2)
associated with heat generation rate _qi is defined as
_Q
00
i ðtÞ ¼ R 2L

0
_qidx. Fig. 7 shows the individual overall heat genera-

tion rates as well as the total heat generation rate
_Q
00ðtÞ ¼ _Q

00
E;jðtÞ þ _Q

00
E;dðtÞ þ _Q

00
E;sðtÞ þ _Q

00
S;cðtÞ as a function of time.

First, it is evident that the irreversible Joule heating _Q
00
E;j was

positive, constant, and equal to 2Lj2s =s ¼ 1:53 W m�2 over the
entire simulation time. In addition, the reversible heat generation
rates _Q

00
E;d, _Q

00
E;s, and _Q

00
S;c were positive during charging and

negative during discharging, as observed experimentally [12].
Their magnitudes quickly reached a plateau whose duration cor-
responded to that observed in the concentration at the Stern/
diffuse layer interface, i.e., when c2(a/2,t) ¼ cmax [Fig. 3(a)]. For the
conditions tested, this corresponded to a surface potential
j(0,t) � 0.75 V. It is interesting to note that EDLCs are often
operated between their rated voltage and one-half of their rated
voltage, typically 1.25e2.5 V or 1.35e2.7 V for commercial EDLCs
with organic electrolyte [3,5,6,13]. Under such conditions, the
magnitude of the reversible heat generation rates would remain
constant for the entire cycle. Finally, the four heat generation rates
considered had the same order of magnitude and all contributed
to the total heat generation rate _Q

00ðtÞ in the electrolyte. The
largest contribution to the reversible heat generation rate was
_Q
00
E;d, while _Q

00
E;s and _Q

00
S;c were each approximately half as large as

_Q
00
E;d. The net heat generation over a complete cycle was positive

and equal to the irreversible Joule heating _Q
00
irrtc.

The predicted overall heat generation rates corroborated
experimental observations presented in Section 2.3. First, the
irreversible heat generation rate _Q

00
irr ¼ _Q

00
E;j ¼ 2Lj2s =s was

proportional to j2s . In addition, predictions of the overall reversible
heat generation rate _Q

00
rev ¼ _Q

00
E;d þ _Q

00
E;s þ _Q

00
S;c at three different

current densities (not shown) confirmed that _Q
00
rev was directly

proportional to js. The reversible heat generation rates were
exothermic during charging and endothermic during discharging
[4,12].

The overall reversible heat generation rate can alternatively be
predicted using Schiffer’s model [4] given by Equation (2). On a per
unit surface area basis, it yields _Q

00
rev;S ¼ _Q rev;S=A ¼ 80:6 W m�2

where A is the electrode surface area. Here, the volumes VS and V0
and the current Is were evaluated as V0 ¼ 2LA, VS ¼ aA, and Is ¼ jsA,
respectively. The predicted value of _Q

00
rev;S was approximately five

times larger than the plateau obtained numerically as
_Q
00
rev ¼ 15:3 W m�2. In the present study, the temperature T0 and

current density js were comparable to those used in Refs. [4], but
the geometric term ln(VS/V0) was 5e7 times larger. In addition,
simulations demonstrated that _Q

00
rev did not change with increasing

inter-electrode distance 2L, provided that the EDLs did not overlap,
i.e., 2L [ 2lD. Then, the concentration profiles and resulting _qrev
within the EDLs remained unchanged. By contrast, Equation (2)
predicts increasing values of _Q

00
rev;S with increasing L.

4.4.3. Temperature profiles
Fig. 8 shows the predicted temperature change (a) T(a/2,t) � T0

at the Stern/diffuse layer interface and (b) T(L,t) � T0 at the
centerline as a function of time t as each contribution _qE;j, _qE;d, _qE;s,
and _qS;c was accounted for sequentially. The Stern/diffuse layer
interface x ¼ a/2 was very close to the EDL region where the local
reversible heat generation rates _qE;d, _qE;s, and _qS;c were maximum.
However, only the Joule heat generation rate _qE;j was significant at
the centerline x ¼ L. Both figures indicate that _qE;j alone would
cause the temperature to rise linearly. The addition of the reversible
heat generation rates _qE;d, _qE;s, and _qS;c resulted in temperature
oscillations. Furthermore, the increase in oscillation amplitude
associated with _qE;d was approximately twice that associated with
either _qE;s or _qS;c, as expected from their relative magnitudes shown
in Fig. 7. Fig. 8(a) shows that the oscillations of T(a/2,t) at the Stern/
diffuse layer interface were relatively large. In addition, T(a/2,t)
responded quickly to switches from charging to discharging and
vice versa. During the first charging step, predictions for T(a/2,t)

Fig. 7. Predicted overall heat generation rates _Q
00
E;jðtÞ, _Q

00
E;dðtÞ, _Q

00
E;sðtÞ, and _Q

00
S;cðtÞ as well

as the total heat generation rate _Q
00ðtÞ as a function of time t.
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accounting for the reversible heat generation rates diverged
immediately from those accounting for Joule heating only. Simi-
larly, T(a/2,t) started to decrease immediately as the discharging
step began. By contrast, the response of the centerline temperature
T(L,t) showed a delayed response to changes in the reversible heat
generation rates occurring near the electrode surface. In particular,
T(L,t) diverged only slightly from that predicted using _qE;j alone
through most of the first charging step. Thereafter, the rise and fall
of the temperature appeared to be delayed by almost half a cycle
period from that predicted at x ¼ a/2. In fact, the centerline tem-
perature rose throughmost of the discharging step and fell through
most of the charging step. The oscillations of T(L,t) were also
smaller and smoother than those of T(a/2,t). Temperature oscilla-
tions at locations between x ¼ a/2 and x ¼ L (not shown) were
intermediate between those shown in Fig. 8(a) and (b). In partic-
ular, the oscillations became smaller, smoother, and more delayed
with increasing distance from the electrode surface as the revers-
ible heat generated in the EDL was conducted to the rest of the
electrolyte. Finally, Fig. 8(a) shows that the maximum temperature
change in the electrolyte was very small. Therefore, neglecting the

temperature dependence of the electrolyte properties and of the
ion transport (Assumption 5) was appropriate.

4.5. Comparison with experimental temperature measurements

The numerical predictions of the present model were compared
qualitatively with experimental temperature measurements re-
ported in the literature [4,13]. Gualous et al. [13] measured the
temperature evolution inside and at the outer surface of a 350 F
cylindrical EDLC during constant-current cycling at 15 A over the
voltage range 1.25 Ve2.5 V. The EDLC was cooled by natural con-
vection in air [13]. Similarly, Schiffer et al. [4] measured the tem-
poral evolution of the outer surface temperature of a 5000 F EDLC
thermally insulated in a polystyrene box and cycled under a variety
of currents and potential windows. The effect of starting the cycle
by charging versus discharging was also considered [4].

The numerically-predicted temperature behavior shown in Fig. 8
qualitatively resembled experimental measurements [4,13]. In
particular, Gualous et al. [13] measured large and sharp temperature

(a)

(b)

Fig. 8. Predicted temperature change (a) T(a/2,t) � T0 at the Stern/diffuse layer
interface and (b) T(L,t) � T0 at the centerline as a function of time t as each individual
heat generation rate term was added.

(a)

(b)

Fig. 9. (a) Numerically predicted temperature change T(L,t) � T0 at the centerline and
(b) measured surface temperature of a commercial EDLC (reproduced from Fig. 8 of
Ref. [4]) as functions of time t for cases starting with either a charging step or a dis-
charging step.
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oscillations inside an EDLC and smaller and smoother oscillations at
the outer surface (Fig. 10 in Ref. [13]).

Fig. 9(a) compares the predicted temperature change T(L,t) � T0
at the centerline as a function of time t for simulations starting with
either a charging step or a discharging step. In both cases, the
predicted temperature increased linearly for a short period of time
(t < 2.5 ms) with a slope equal to _qE;j=rcp ¼ j2s =srcp. For the case
starting with a charging step under þjs, the temperature continued
increasing to reach a peak at t z 10 ms. However, for the case
starting with a discharging step under �js, the temperature
decreased to reach aminimum also around tz 10ms. After the first
cycle, the temperature in both cases oscillated around an overall
temperature rise of slope _qE;j=rcp ¼ j2=srcp corresponding to
irreversible Joule heating. Fig. 9(b) shows the measured surface
temperature of a commercial EDLC as a function of time t for several
charging/discharging cycles startingwith either a charging step or a
discharging step [4]. It is evident that the predicted thermal
behavior shown in Fig. 9(a) was remarkably similar to that observed
experimentally. Note that quantitative comparison could not be

performed due to the complexity of the porous electrode archi-
tecture in the actual EDLC compared with the simple planar elec-
trode simulated. However, the results indicate that our physical
model captures the physical phenomena governing the EDLC
thermal response during constant-current cycling.

Fig. 10(a) shows the predicted temperature change T(L,t) � T0 at
the centerline as a function of time t for cycling at three different
current densities js. The potential window was held constant as 0e
2.5 V by adjusting the cycle period tc. For all cases, the slope of the
overall temperature rise was equal to j2s =rcps, corresponding to
irreversible Joule heating. Fig. 10(b) shows the measured surface
temperatures of a commercial EDLC cycled at three different values
of current Is over the potential window 1.5e2.5 V [4]. Here also, the
predicted temporal evolutions of the temperature shown in
Fig. 10(a) closely resembled those observed experimentally [4].
However, in both cases, the amplitude of the temperature oscilla-
tions decreased with increasing current density. This appears to
contradict earlier observations that the reversible heat generation
rates increased linearly with increasing current density. However,
temperature oscillations predicted near the EDL were significantly
larger than those at the centerline and increased with increasing
current density (not shown). Thus, the apparent contradiction can
be attributed to the fact that the reversible heat generated near the
electrode surfaces did not have time to propagate deep into the
electrolyte domain due to the reduction in cycle period with
increasing current density. Therefore, temperature oscillations at
the outer surface of a device behave differently from those near the
electrode surface and underestimate the internal temperature os-
cillations. In fact, the large temperature fluctuations near the
electrode create “hot spots” that may contribute to premature
degradation of EDLC materials or electrolyte decomposition and of
the overall device performance [27].

Finally, Fig. 11 shows the predicted temperature change
T(L,t) � T0 at the centerline as a function of time t for cycling at
current density js ¼ 14 mA cm�2 over different potential windows,
namely 0e2.5 V, 0e1.25 V, and 1.25e2.5 V. It is evident that the
temperature rise in these three cases had the same overall slope
since the current density js was the same for all cases. The largest

(a)

(b)

Fig. 10. (a) Predicted temperature rise T(L,t) � T0 at the centerline for cycling at three
different current densities js over the same potential window and (b) measured surface
temperature of a commercial EDLC during cycling under three different values of
current Is over the same potential window (reproduced from Fig. 10 of Ref. [4]) as
functions of time t.

Fig. 11. Predicted temperature rise T(L,t) � T0 as a function of time t at the centerline
for cycling at the same current density js ¼ 14 mA$cm�2 over different potential
windows.
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temperature oscillations were observed for the 2.5 V potential
window. Those for the two 1.25 V potential windows were signif-
icantly smaller and of similar magnitude to one another. Schiffer
et al. [4] reported very similar results for experimental cycling of a
commercial EDLC over three analogous potential windows 0.5e
2.5 V, 0.5e1.5 V, and 1.5 V�2.5 V.

5. Conclusion

This paper presented a new physical model for coupled ion
transport and heat transfer during constant-current charging and
discharging of EDLCs. The model accounted for the presence of the
Stern layer and for the finite size of ions by using the modified
PoissoneNernstePlanck model. This thermal model is important in
that it predicts both the spatial and the temporal variations of the
different heat generation rates and of the temperature inside EDLCs
based on first principles. Unlike previous thermal models, it
accounted for the irreversible Joule heat generation rate _qE;j as well
as three reversible heat generation rates _qE;d, _qE;s, and _qS;c due to
diffusion, steric effects, and entropy changes, respectively. To the
best of our knowledge, the present study is the first to derive the
diffusion and steric contributions to the heat generation in EDLCs.
The reversible heat generation rates were exothermic during
charging, endothermic during discharging, and localized in the
EDLs. They resulted in large temperature oscillations near the
electrodes with maximum temperatures significantly higher than
those predicted by Joule heating alone. Predictions of temperature
evolution were remarkably similar to those observed experimen-
tally [4,13]. This indicates that the physical model developed
captured the physical phenomena governing the thermal behavior
of EDLCs.
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